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Wlth two independent COupllng Spec(L) = {2 |4 € N, ) in the context of boundary field theories
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in the sense that L € exp(Preg)- the Lax matrices of CMS and RSvD systems
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Spec(M) for the set of eigenvalues of the matrix M

Lemma. At each point of the phase space we have L € exp(p).

Lemma. The matriz L and the diagonal matriz e® obey

Theorem. The eigenvalues of the Laxr matrix L are in involution.
Abstract. In his 1994 thesis, Jan Felipe van Diejen proved the quantum . . : . . . . .
integrability of the hyperbolic Ruijsenaars-Schneider model attached to the Link to van Dl@Jen s Hamiltonians + classical/quantum duality relating the
BC,, root system. This led to explicit formulas for a complete set of Poisson spectra of certain quantum spin chains to Lax

commuting functions in the classical limit, but a Lax matrix generating these matrices of the classical CMS and RSvD systems
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The initial conditions are
Ae(0) =4 —a and 0,(0) = —1,
a=1,2,3.
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