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Action-angle duality for the trigonometric BCn Sutherland
system is explored via Hamiltonian reduction [1]. Conse-
quently, various features such as equilibrium, degeneracy,
and connection to a family of commuting Hamiltonians
found by van Diejen are elucidated [2].

Introduction
. .

The trigonometric BCn Sutherland system
The trigonometric BCn Sutherland system is defined
by the Hamiltonian

H(q, p) = 1
2
⟨p, p⟩ +

∑
α∈BC+

n

γα

sin2⟨α, q⟩
, (1)

where ⟨., .⟩ denotes the standard inner product on Rn, α runs
over the positive roots of root system BCn, and γα are coupling
constants depending only on the length of α. Hence there are
three independent parameters, denoted by γ, γ1, γ2, and
in order to ensure pure repulsion, are restricted as follows

γ > 0, γ2 > 0, 4γ1 + γ2 > 0. (2)
The phase space is the cotangent bundle T ∗C1 = C1 × Rn of
the Weyl alcove

C1 =
{
q ∈ Rn | π/2 > q1 > · · · > qn > 0

}
, (3)

and q, p are Darboux coordinates, i.e. the canonical symplectic
form on T ∗C1 is of the form

ω =
n∑

j=1
dqj ∧ dpj. (4)

A physical interpretation of the trigonometric BCn Sutherland
model is depicted below.
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Figure 1: 2n + 1 particles move symmetrically w.r.t. a fixed point Q0 on
a circle of radius r = 1/2. Interaction is given by a pair potential inversely
proportional to the square of the chord-distance.

The dual system
At a ‘semi-global’ level, the dual system has the Hamiltonian

H̃0(λ, ϑ) =
n∑

j=1
cos(ϑj)|w(λj)|

n∏
k=1

(k ̸=j)

|v(λj − λk)||v(λj + λk)|

− νκ

4µ2

n∏
j=1

|v(λj)|2 + νκ

4µ2, (5)

with potentials v(z) = 1+2iµ/z, w(z) = (1+ iν/z)(1+ iκ/z),
and coupling constants µ, ν, κ satisfying

µ > 0, ν > |κ| ≥ 0. (6)
Duality is established under the following relation of couplings

γ = µ2, γ1 = νκ

2
, γ2 = (ν − κ)2

2
. (7)

The coordinates λ vary in a thick-walled Weyl chamber
C2 =

{
λ ∈ Rn | λa − λa+1 > 2µ and λn > ν

}
, (8)

and ϑ are angular variables. The Hamiltonian H̃0 generates
dynamics via the symplectic form

ω̃0 =
n∑

k=1
dλk ∧ dϑk. (9)

This system is a particular real form of the complex rational
BCn Ruijsenaars – Schneider – van Diejen system.

Action-angle duality
. .

Duality via reduction – The basic idea
• Start with “big phase space”, of group-theoretic origin,

equipped with two canonical families of commuting “free”
Hamiltonians.

• Apply suitable single (symplectic) reduction to the big
phase space and construct two “natural” models, S and S̃,
of the reduced phase space.

• The two families of “free” Hamiltonians become interesting
many-body Hamiltonians and particle-positions in terms of
both models. Their role interchanges in the two models.

• The natural symplectomorphism between the two models of
the reduced phase space yields the action-angle map.

.
.

.M. o. m. e. n. t. u. m.. c. o. n. s. t. r. a. i. n. t.. s. u. r. f. a. c. e. M. o. d. e. l. s.. i. n..
d

.
u

.
a

.
l

.
i

.
t

.
y

.

O

.

r

.

b

.

i

.

t

.

s

..

o

.

f

..

s

.

y

.

m

.

m

.

e

.

t

.

r

.

y

..

g

.

r

.

o

.

u

.

p

..

=

..

P

.

o

.

i

.

n

.

t

.

s

..

o

.

f

..

r

.

e

.

d

.

u

.

c

.

e

.

d

..

p

.

h

.

a

.

s

.

e

..

s

.

p

.

a

.

c

.

e

.

S

. S̃

Figure 2: The geometry behind Hamiltonian reduction & action-angle duality.

Reduction on the unitary group U(2n)
In [1] we started from the cotangent bundle of U(2n), i.e.

T ∗U(2n) ∼= U(2n) × u(2n) = {(y, Y )}, (10)
on which the fixed-point subgroup G+ of the automorphism

y 7→ CyC−1 with C =
[

0n 1n
1n 0n

]
(11)

acts smoothly, freely, and properly entailing that the quotient
space of the constraint surface J−1(0) of the momentum map

J(y, Y, υℓ, υr) =
(
(yY y−1)+ + υℓ, −Y+ + υr

)
(12)

is a smooth manifold. This is our reduced phase space
Pred = J−1(0)/(G+ × G+). (13)

Solving the momentum constraint
J(y, Y, υℓ, υr) = 0 (14)

by “diagonalizing”
..1 the group component y, leads to a global cross-section

S = {(eiQ(q), Y (q, p), υ) | q ∈ C1, p ∈ Rn} (15)
for the action of G+ on J−1(0). Moreover, Y (q, p) is a Lax
matrix proving the trigonometric BCn Sutherland system to
be Liouville integrable. In particular, the spectral invariants

Hk(q, p) = (−1)k

4k
tr(Y (q, p))2k, k = 1, . . . , n (16)

form a complete set of functions in involution, H1 = H (1).
..2 the Lie algebra part Y , gives another cross-section

S̃ = {(y(λ, ϑ), i(hΛh−1)(λ), υ) | λ ∈ C2, eiϑ ∈ Tn} (17)
for the G+-action restricted to a dense subset of J−1(0).
A Lax matrix of the form L(λ, ϑ) = y(λ, ϑ)−1Cy(λ, ϑ)C is
obtained for the dual system. A Poisson commuting family
is given by

H̃k(λ, ϑ) = (−1)k

2k
tr(L(λ, ϑ))k, k = 1, . . . , n (18)

with H̃1 = H̃0 (5).
Remark. Introducing the complex variables

za =
√

λa − λa+1 − 2µ
a∏

b=1
eiϑb, zn =

√
λn − ν

n∏
b=1

eiϑb (19)

enables one to complete the “semi-global” model S̃ of the dual
system into a global model by allowing the zero value for the
complex variables z1, . . . , zn. This completion results
from the symplectic reduction automatically.

Applications
. .

Equilibrium of the Sutherland system
The Sutherland Lax matrix is diagonalizable

Y (q, p) ∼ iΛ(λ) = i diag(λ, −λ), (20)
thus the action-angle transforms of (16) are of the form

hk(λ) = λ2k
1 + · · · + λ2k

n

2k
, k = 1, . . . , n, (21)

and assume a global minimum in the closure of C2

min
(q,p)∈C1×Rn

Hk(q, p) = min
λ∈C2

hk(λ) = hk(λ0),

at the boundary point λ0
a = (n − a)2µ + ν, a = 1, . . . , n.

In terms of the “oscillator variables” z ∈ Cn the equilibrium
(q, p) = (qe, 0) of the Sutherland system corresponds to z = 0.
Superintegrability of the dual system
The action-angle transforms of the Hamiltonians (18) are

h̃k(q) := (−1)k

k

n∑
j=1

cos(2kqj), k = 1, . . . , n. (22)

The dual model is maximally superintegrable, i.e. there
are (n − 1) additional constants of motion of the form

fi(q, p) :=
n∑

j=1
pj(X−1(q))j,i, i = 2, . . . , n, (23)

where X is the n × n matrix

Xa,b = ∂h̃a

∂qb
= (−1)a+12 sin(2aqb), a, b = 1, . . . , n. (24)

A simple calculation shows that
det X(q) ∝

∏
j

sin 2qj

∏
j<k

(cos 2qk − cos 2qj). (25)

Hence X(q) is invertible at every point q ∈ C1.
Equivalence of two sets of Hamiltonians
A Poisson commuting family of functions Fℓ (ℓ = 1, . . . , n)
involving the Hamiltonian (5) was found by van Diejen

Fℓ(λ, ϑ) =
∑

J⊂{1,...,n}, |J |≤ℓ
εj=±1, j∈J

cos(ϑεJ)V 1/2
εJ ;J cV

1/2
−εJ ;J cUJ c,ℓ−|J |, (26)

with H̃0 = 1
2F1 − n, The coefficients Km of the characteristic

polynomial of the Lax matrix L(λ, ϑ), that is

det(L(λ, ϑ) − x12n) =
2n∑

m=0
Km(λ, ϑ)x2n−m, (27)

provide another complete set of integrals with H̃0 = −1
2K1.

Q: Are van Diejen’s functions (26) and the spectral invariants
in (27) related? (Non-trivial because H̃0 is superintegrable.)
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Figure 3: A possible, yet undesired scenario.

The affirmative answer is given in [2], where the following linear
relation is proved

Km(q) = (−1)m
m∑

ℓ=0

(
2(n − ℓ)
m − ℓ

)
Fℓ(q). (28)

Our argument relies on the scattering theory of the rational
BCn RSvD system..

.
Results.

.

.

.

In the framework of symplectic reduction we obtained a Lax matrix for the rational BCn RSvD model with 3 independent
parameters. Action-angle duality for the trigonometric BCn Sutherland system with a global characterization of the
phase spaces was constructed. The equilibrium of trigonometric BCn Sutherland system was found. Superintegrability
of the derived dual system and equivalence of the two families of Hamiltonians was proved.
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