The trigonometric BC_{n} Sutherland system: action-angle duality and applications

Tamás F. Görbe
(Department of Theoretical Physics, University of Szeged)

Introduction
The trigonometric BC_{n} Sutherland system The trigonometric BC_{n} Sutherland system is defined by the Hamiltonian

$$
\begin{equation*}
H(q, p)=\frac{1}{2}\langle p, p\rangle+\sum_{\alpha \in \mathrm{BC}_{n}^{+}} \frac{\gamma_{\alpha}}{\sin ^{2}\langle\alpha, q\rangle}, \tag{1}
\end{equation*}
$$

where $\langle.,$.$\rangle denotes the standard inner product on \mathbb{R}^{n}, \alpha$ runs over the positive roots of root system BC_{n}, and γ_{α} are coupling constants depending only on the length of α. Hence there are three independent parameters, denoted by $\gamma, \gamma_{1}, \gamma_{2}$, and in order to ensure pure repulsion, are restricted as follows

$$
\gamma>0, \quad \gamma_{2}>0, \quad 4 \gamma_{1}+\gamma_{2}>0 .
$$

The phase space is the cotangent bundle $T^{*} C_{1}=C_{1} \times \mathbb{R}^{n}$ of the Weyl alcove

$$
\begin{equation*}
C_{1}=\left\{q \in \mathbb{R}^{n} \mid \pi / 2>q_{1}>\cdots>q_{n}>0\right\} \tag{3}
\end{equation*}
$$

and q, p are Darboux coordinates, i.e. the canonical symplectic form on $T^{*} C_{1}$ is of the form

$$
\begin{equation*}
\omega=\sum_{j=1}^{n} d q_{j} \wedge d p_{j} \tag{4}
\end{equation*}
$$

A physical interpretation of the trigonometric BC_{n} Sutherland model is depicted below.

Figure 1: $2 n+1$ particles move symmetrically w.r.t. a fixed point Q_{0} on a circle of radius $r=1 / 2$. Interaction is given by a pair potential inversely proportional to the square of the chord-distance.
The dual system
At a 'semi-global' level, the dual system has the Hamiltonian $\tilde{H}^{0}(\lambda, \vartheta)=\sum_{j=1}^{n} \cos \left(\vartheta_{j}\right)\left|w\left(\lambda_{j}\right)\right| \prod_{\substack{k=1 \\(k \neq j)}}^{n}\left|v\left(\lambda_{j}-\lambda_{k}\right)\right|\left|v\left(\lambda_{j}+\lambda_{k}\right)\right|$ $-\frac{\nu \kappa}{4 \mu^{2}} \prod_{j=1}^{n}\left|v\left(\lambda_{j}\right)\right|^{2}+\frac{\nu \kappa}{4 \mu^{2}},(5)$ with potentials $v(z)=1+2 \mathrm{i} \mu / z, w(z)=(1+\mathrm{i} \nu / z)(1+\mathrm{i} \kappa / z)$, and coupling constants μ, ν, κ satisfying

$$
\begin{equation*}
\mu>0, \quad \nu>|\kappa| \geq 0 \tag{6}
\end{equation*}
$$

Duality is established under the following relation of couplings

$$
\begin{equation*}
\gamma=\mu^{2}, \quad \gamma_{1}=\frac{\nu \kappa}{2}, \quad \gamma_{2}=\frac{(\nu-\kappa)^{2}}{2} . \tag{7}
\end{equation*}
$$

The coordinates λ vary in a thick-walled Weyl chamber

$$
\begin{equation*}
C_{2}=\left\{\lambda \in \mathbb{R}^{n} \mid \lambda_{a}-\lambda_{a+1}>2 \mu \text { and } \lambda_{n}>\nu\right\} \tag{8}
\end{equation*}
$$

and ϑ are angular variables. The Hamiltonian \widetilde{H}^{0} generates dynamics via the symplectic form

$$
\begin{equation*}
\widetilde{\omega}^{0}=\sum_{k=1}^{n} d \lambda_{k} \wedge d \vartheta_{k} \tag{9}
\end{equation*}
$$

This system is a particular real form of the complex rational BC_{n} Ruijsenaars - Schneider - van Diejen system.

Action-angle duality

Duality via reduction - The basic idea - Start with "big phase space", of group-theoretic origin, equipped with two canonical families of commuting "free" Hamiltonians.

- Apply suitable single (symplectic) reduction to the big phase space and construct two "natural" models, S and \tilde{S}, of the reduced phase space.
- The two families of "free" Hamiltonians become interesting many-body Hamiltonians and particle-positions in terms of both models. Their role interchanges in the two models.
- The natural symplectomorphism between the two models of the reduced phase space yields the action-angle map.

Figure 2: The geometry behind Hamiltonian reduction \& action-angle duality. Reduction on the unitary group $\mathrm{U}(2 n)$ In [1] we started from the cotangent bundle of $\mathrm{U}(2 n)$, i.e. $T^{*} \mathrm{U}(2 n) \cong \mathrm{U}(2 n) \times \mathfrak{u}(2 n)=\{(y, Y)\}$,
on which the fixed-point subgroup G_{+}of the automorphism

$$
y \mapsto C y C^{-1} \quad \text { with } \quad C=\left[\begin{array}{cc}
0_{n} & 1_{n} \tag{10}\\
1_{n} & 0_{n}
\end{array}\right]
$$

acts smoothly, freely, and properly entailing that the quotient space of the constraint surface $J^{-1}(0)$ of the momentum map

$$
\begin{equation*}
J\left(y, Y, v^{\ell}, v^{r}\right)=\left(\left(y Y y^{-1}\right)_{+}+v^{\ell},-Y_{+}+v^{r}\right) \tag{12}
\end{equation*}
$$

is a smooth manifold. This is our reduced phase space

$$
\begin{equation*}
P_{\mathrm{red}}=J^{-1}(0) /\left(G_{+} \times G_{+}\right) . \tag{13}
\end{equation*}
$$

Solving the momentum constraint

$$
\begin{equation*}
J\left(y, Y, v^{\ell}, v^{r}\right)=0 \tag{14}
\end{equation*}
$$

by "diagonalizing"
(1) the group component y, leads to a global cross-section $S=\left\{\left(e^{\mathrm{i} Q(q)}, Y(q, p), v\right) \mid q \in C_{1}, p \in \mathbb{R}^{n}\right\}$ for the action of G_{+}on $J^{-1}(0)$. Moreover, $Y(q, p)$ is a Lax matrix proving the trigonometric BC_{n} Sutherland system to be Liouville integrable. In particular, the spectral invariants

$$
\begin{equation*}
H_{k}(q, p)=\frac{(-1)^{k}}{4 k} \operatorname{tr}(Y(q, p))^{2 k}, \quad k=1, \ldots, n \tag{16}
\end{equation*}
$$

form a complete set of functions in involution, $H_{1}=H(1)$. (2the Lie algebra part Y, gives another cross-section

$$
\widetilde{S}=\left\{\left(y(\lambda, \vartheta), \mathrm{i}\left(h \Lambda h^{-1}\right)(\lambda), v\right) \mid \lambda \in C_{2}, e^{\mathrm{i} \vartheta} \in \mathbb{T}^{n}\right\}
$$

for the G_{+}-action restricted to a dense subset of $J^{-1}(0)$. A Lax matrix of the form $L(\lambda, \vartheta)=y(\lambda, \vartheta)^{-1} C y(\lambda, \vartheta) C$ is obtained for the dual system. A Poisson commuting family is given by

$$
\begin{equation*}
\widetilde{H}_{k}(\lambda, \vartheta)=\frac{(-1)^{k}}{2 k} \operatorname{tr}(L(\lambda, \vartheta))^{k}, \quad k=1, \ldots, n \tag{18}
\end{equation*}
$$

with $\widetilde{H}_{1}=\widetilde{H}^{0}(5)$.
Remark. Introducing the complex variables

$$
\begin{equation*}
z_{a}=\sqrt{\lambda_{a}-\lambda_{a+1}-2 \mu} \prod_{b=1}^{a} e^{\mathrm{i} \vartheta_{b}}, z_{n}=\sqrt{\lambda_{n}-\nu} \prod_{b=1}^{n} e^{\mathrm{i} \vartheta_{b}} \tag{19}
\end{equation*}
$$

enables one to complete the "semi-global" model \widetilde{S} of the dual system into a global model by allowing the zero value for the complex variables z_{1}, \ldots, z_{n}. This completion results from the symplectic reduction automatically.

Applications

Equilibrium of the Sutherland system The Sutherland Lax matrix is diagonalizable

$$
\begin{equation*}
Y(q, p) \sim \mathrm{i} \Lambda(\lambda)=\mathrm{i} \operatorname{diag}(\lambda,-\lambda) \tag{20}
\end{equation*}
$$

thus the action-angle transforms of (16) are of the form

$$
\begin{equation*}
h_{k}(\lambda)=\frac{\lambda_{1}^{2 k}+\cdots+\lambda_{n}^{2 k}}{2 k}, \quad k=1, \ldots, n \tag{21}
\end{equation*}
$$

and assume a global minimum in the closure of C_{2}

$$
\min _{(q, p) \in C_{1} \times \mathbb{R}^{n}} H_{k}(q, p)=\min _{\lambda \in \overline{C_{2}}} h_{k}(\lambda)=h_{k}\left(\lambda^{0}\right),
$$

$$
\text { at the boundary point } \lambda_{a}^{0}=(n-a) 2 \mu+\nu, a=1,
$$ In terms of the "oscillator variables" $z \in \mathbb{C}^{n}$ the equilibrium $(q, p)=\left(q^{e}, 0\right)$ of the Sutherland system corresponds to $z=0$. Superintegrability of the dual system

The action-angle transforms of the Hamiltonians (18) are

$$
\begin{equation*}
\widetilde{h}_{k}(q):=\frac{(-1)^{k}}{k} \sum_{j=1}^{n} \cos \left(2 k q_{j}\right), \quad k=1, \ldots, n \tag{22}
\end{equation*}
$$

The dual model is maximally superintegrable, i.e. there are $(n-1)$ additional constants of motion of the form

$$
\begin{equation*}
f_{i}(q, p):=\sum_{j=1}^{n} p_{j}\left(X^{-1}(q)\right)_{j, i}, \quad i=2, \ldots, n \tag{23}
\end{equation*}
$$

where X is the $n \times n$ matrix

$$
X_{a, b}=\frac{\partial \widetilde{h}_{a}}{\partial q_{b}}=(-1)^{a+1} 2 \sin \left(2 a q_{b}\right), \quad a, b=1, \ldots, n
$$

A simple calculation shows that

$$
\begin{equation*}
\operatorname{det} X(q) \propto \prod_{j} \sin 2 q_{j} \prod_{j<k}\left(\cos 2 q_{k}-\cos 2 q_{j}\right) . \tag{25}
\end{equation*}
$$

Hence $X(q)$ is invertible at every point $q \in C_{1}$.
Equivalence of two sets of Hamiltonians A Poisson commuting family of functions $F_{\ell}(\ell=1, \ldots$ involving the Hamiltonian (5) was found by van Diejen

$$
\begin{equation*}
F_{\ell}(\lambda, \vartheta)=\sum_{\substack{J \subset\{1, \ldots, n\},|J| \leq \ell \\ \varepsilon_{j}= \pm 1, j \in J}} \cos \left(\vartheta_{\varepsilon, J}\right) V_{\varepsilon J ; j J}^{1 / 2} V_{-\varepsilon J ; J J}^{1 / 2} U_{J^{c}, \ell-|J|}, \quad(2 \tag{26}
\end{equation*}
$$

with $\widetilde{H}^{0}=\frac{1}{2} F_{1}-n$, The coefficients K_{m} of the characteristic polynomial of the Lax matrix $L(\lambda, \vartheta)$, that is

$$
\begin{equation*}
\operatorname{det}\left(L(\lambda, \vartheta)-x \mathbf{1}_{2 n}\right)=\sum_{m=0}^{2 n} K_{m}(\lambda, \vartheta) x^{2 n-m} \tag{27}
\end{equation*}
$$

provide another complete set of integrals with $\widetilde{H}^{0}=-\frac{1}{2} K_{1}$. Q : Are van Diejen's functions (26) and the spectral invariant in (27) related? (Non-trivial because \widetilde{H}^{0} is superintegrable.)

Figure 3: A possible, yet undesired scenario.
The affirmative answer is given in [2], where the following linear relation is proved

$$
\begin{equation*}
K_{m}(q)=(-1)^{m} \sum_{\ell=0}^{m}\binom{2(n-\ell)}{m-\ell} F_{\ell}(q) \tag{28}
\end{equation*}
$$

Our argument relies on the scattering theory of the rational BC_{n} RSvD system.

Results

[^0]
[^0]: In the framework of symplectic reduction we obtained a Lax matrix for the rational $\mathrm{BC}_{n} \mathrm{RSvD}$ model with 3 independent parameters. Action-angle duality for the trigonometric BC_{n} Sutherland system with a global characterization of the phase spaces was constructed. The equilibrium of trigonometric BC_{n} Sutherland system was found. Superintegrability of the derived dual system and equivalence of the two families of Hamiltonians was proved.

